Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available March 26, 2026
- 
            Free, publicly-accessible full text available January 22, 2026
- 
            Glycine receptors (GlyR) conduct inhibitory glycinergic neurotransmission in the spinal cord and the brainstem. They play an important role in muscle tone, motor coordination, respiration, and pain perception. However, the mechanism underlying GlyR activation remains unclear. There are five potential glycine binding sites in α1 GlyR, and different binding patterns may cause distinct activation or desensitization behaviors. In this study, we investigated the coupling of protein conformational changes and glycine binding events to elucidate the influence of binding patterns on the activation and desensitization processes of α1 GlyRs. Subsequently, we explored the energetic distinctions between the apical and lateral pathways during α1 GlyR conduction to identify the pivotal factors in the ion conduction pathway preference. Moreover, we predicted the mutational effects of the key residues and verified our predictions using electrophysiological experiments. For the mutants that can be activated by glycine, the predictions of the mutational directions were all correct. The strength of the mutational effects was assessed using Pearson’s correlation coefficient, yielding a value of −0.77 between the calculated highest energy barriers and experimental maximum current amplitudes. These findings contribute to our understanding of GlyR activation, identify the key residues of GlyRs, and provide guidance for mechanistic studies on other pLGICs.more » « less
- 
            ABSTRACT G‐protein‐coupled receptors (GPCRs) constitute one of the most prominent families of integral membrane receptor proteins that mediate most transmembrane signaling processes. Malfunction of these signal transduction processes is one of the underlying causes of many human pathologies (Parkinson's, Huntington's, heart diseases, etc), provoking that GPCRs are the largest family of druggable proteins. However, these receptors have been targeted traditionally by orthosteric ligands, which usually causes side effects due to the simultaneous targeting of homologous receptor subtypes. Allosteric modulation offers a promising alternative approach to circumvent this problematic and, thus, comprehending its details is a most important task. Here we use the Cannabinoid type‐1 receptor (CB1R) in trying to shed light on this issue, focusing on positive allosteric modulation. This is done by using the protein‐dipole Langevin‐dipole (PDLD) within the linear response approximation (LRA) framework (PDLD/S‐2000) along with our coarse‐grained (CG) model of membrane proteins to evaluate the dissociation constants (KBs) and cooperativity factors (αs) for a diverse series of CB1R positive allosteric modulators belonging to the 2‐phenylindole structural class, considering CP55940 as an agonist. The agreement with the experimental data evinces that significantly populated allosteric modulator:CB1R and allosteric modulator:CP55940:CB1R complexes have been identified and characterized successfully. Analyzing them, it has been determined that CB1R positive allosteric modulation lies in an outwards displacement of transmembrane α helix (TM) 4 extracellular end and in the regulation of the range of motion of a compound TM7 movement for binary and ternary complexes, respectively. In this respect, we achieved a better comprehension of the molecular architecture of CB1R positive allosteric site, identifying Lys1923.28and Gly1943.30as key residues regarding electrostatic interactions inside this cavity, and to rationalize (at both structural and molecular level) the exhibited stereoselectivity in relation to positive allosteric modulation activity by considered CB1R allosteric modulators. Additionally, putative/postulated allosteric binding sites have been screened successfully, identifying the real CB1R positive allosteric site, and most structure–activity relationship (SAR) studies of CB1R 2‐phenylindole allosteric modulators have been rationalized. All these findings point out towards the predictive value of the methodology used in the current work, which can be applied to other biophysical systems of interest. The results presented in this study contribute significantly to understand GPCRs allosteric modulation and, hopefully, will encourage a more thorough exploration of the topic.more » « less
- 
            Glucagon stands out as a pivotal peptide hormone, instrumental in controlling blood glucose levels and lipid metabolism. While the formation of glucagon amyloid fibrils has been documented, their biological functions remain enigmatic. Recently, we demonstrated experimentally that glucagon amyloid fibrils can act as catalysts in several biological reactions including esterolysis, lipid hydrolysis, and dephosphorylation. Herein, we present a multiscale quantum mechanics/molecular mechanics (QM/MM) simulation of the acylation step in the esterolysis of para-nitrophenyl acetate (p-NPA), catalyzed by native glucagon amyloid fibrils, serving as a model system to elucidate their catalytic function. This step entails a concerted mechanism, involving proton transfer from serine to histidine, followed by the nucleophilic attack of the serine oxy anion on the carbonyl carbon of p-NPA. We computed the binding energy and free-energy profiles of this reaction using the protein-dipole Langevin-dipole (PDLD) within the linear response approximation (LRA) framework (PDLD/S-LRA-2000) and the empirical valence bond (EVB) methods. This included simulations of the reaction in an aqueous environment and in the fibril, enabling us to estimate the catalytic effect of the fibril. Our EVB calculations obtained a barrier of 23.4 kcal mol-1 for the enzyme-catalyzed reaction compared to the experimental value of 21.9 kcal mol-1 (and a calculated catalytic effect of 3.2 kcal mol-1 compared to the observed effect of 4.7 kcal mol-1). This close agreement together with the barrier reduction when transitioning from the reference solution reaction to the amyloid fibril provides supporting evidence to the catalytic role of glucagon amyloid fibrils. Moreover, employing the PDLD/S-LRA-2000 approach further reinforced exclusively the enzyme's catalytic role. The results presented in this study contribute significantly to our understanding of the catalytic role of glucagon amyloid fibrils, marking, to the best of our knowledge, the first-principles mechanistic investigation of fibrils using QM/MM methods. Therefore, our findings offer fruitful insights for future research into the mechanisms of related amyloid catalysis.more » « less
- 
            Homomeric dimerization of metabotropic glutamate receptors (mGlus) is essential for the modulation of their functions and represents a promising avenue for the development of novel therapeutic approaches to address central nervous system diseases. Yet, the scarcity of detailed molecular and energetic data on mGlu2 impedes our in-depth comprehension of their activation process. Here, we employ computational simulation methods to elucidate the activation process and key events associated with the mGlu2, including a detailed analysis of its conformational transitions, the binding of agonists, Giprotein coupling, and the guanosine diphosphate (GDP) release. Our results demonstrate that the activation of mGlu2 is a stepwise process and several energy barriers need to be overcome. Moreover, we also identify the rate-determining step of the mGlu2’s transition from the agonist-bound state to its active state. From the perspective of free-energy analysis, we find that the conformational dynamics of mGlu2’s subunit follow coupled rather than discrete, independent actions. Asymmetric dimerization is critical for receptor activation. Our calculation results are consistent with the observation of cross-linking and fluorescent-labeled blot experiments, thus illustrating the reliability of our calculations. Besides, we also identify potential key residues in the Giprotein binding position on mGlu2, mGlu2 dimer’s TM6–TM6 interface, and Gi α5 helix by the change of energy barriers after mutation. The implications of our findings could lead to a more comprehensive grasp of class C G protein-coupled receptor activation.more » « less
- 
            Bioluminescence is a fascinating natural phenomenon, wherein organisms produce light through specific biochemical reactions. Among these organisms, Renilla luciferase (RLuc) derived from the sea pansy Renilla reniformis is notable for its blue light emission and has potential applications in bioluminescent tagging. Our study focuses on RLuc8, a variant of RLuc with eight amino acid substitutions. Recent studies have shown that the luminescent emitter coelenteramide can adopt multiple protonation states, which may be influenced by nearby residues at the enzyme's active site, demonstrating a complex interplay between protein structure and bioluminescence. Herein, using the quantum mechanical consistent force field method and the semimacroscopic protein dipole-Langevin dipole method with linear response approximation, we show that the phenolate state of coelenteramide in RLuc8 is the primary light-emitting species in agreement with experimental results. Our calculations also suggest that the proton transfer (PT) from neutral coelenteramide to Asp162 plays a crucial role in the bioluminescence process. Additionally, we reproduced the observed emission maximum for the amide anion in RLuc8-D120A and the pyrazine anion in the presence of a Na+ counterion in RLuc8-D162A, suggesting that these are the primary emitters. Furthermore, our calculations on the neutral emitter in the engineered AncFT-D160A enzyme, structurally akin to RLuc8-D162A but with a considerably blue-shifted emission peak, aligned with the observed data, possibly explaining the variance in emission peaks. Overall, this study demonstrates an effective approach to investigate chromophores' bimolecular states while incorporating the PT process in emission spectra calculations, contributing valuable insights for future studies of PT in photoproteins.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
